
Exploiting Freebase to Obtain
GoodRelations-based Product Ontologies

Marek Dudáš, Ondřej Zamazal, Jindřich Mynarz, and Vojtěch Svátek

University of Economics, Prague,
xdudm12|ondrej.zamazal|jindrich.mynarz|svatek@vse.cz

Abstract. Application of semantic web technologies in e-commerce de-
pends on the availability of product ontologies. However, such ontolo-
gies are not yet available for many industries and developing them from
scratch is costly. We present a method of reusing parts of the Freebase
schema by transforming it into a GoodRelations-based product ontol-
ogy, using our Pattern-based Ontology Transformation Framework. We
demonstrate our method on a part of the Freebase Medicine schema,
which we transformed into a product ontology covering prescription
drugs.

Key words: ontology development, ontology transformation, non-ontological
resources, GoodRelations, product ontology, Freebase

1 Introduction

It can be expected that a better level of automation in e-commerce can be
achieved by annotating product and service data with RDF. Appropriate on-
tologies or vocabularies, typically expressed in the standard OWL language,1

are needed for that. GoodRelations (GR) [1] is an ontology covering the rela-
tionships between a possible seller, buyer and the product/service offered.2 GR
is supposed to serve as a basis for specific product ontologies that can be created
as its vertical extensions.3 One of the advantages of this approach is that the core
structure of a product ontology does not have to be developed from scratch. An-
other, probably more important, advantage is that if several product ontologies
covering different products share the GR basis they can be integrated into an
application much easier than if each was created using different modeling style.
A software tool working with data annotated with GR-based product ontologies
can benefit from the unified modeling style: their code can be simpler when the
developers can rely on the fact that all ontologies have the same basic structure
(this is explained in more detail in Section 2.1). As the GR itself is already quite
widely adopted [2], GR-based product ontologies and data annotated with them

1 http://www.w3.org/TR/owl2-overview/
2 There is also Schema.org, which has now GR basically integrated as its e-commerce

core.
3 In this paper we call such ontologies ”GR-based.”

2 Marek Dudáš et al.

can also be expected to have a better chance of adoption or exploitation than
proprietary product ontologies and data. The problem is that such ontologies are
not yet available for many industries; it seems that their only reliable sources
are currently the ‘specific industries’ section of the GR cookbook4 and the on-
tology collection developed in the OPDM project.5 Developing a new product
ontology from scratch might be very time consuming. Transforming shallow non-
ontological models into OWL only saves a fraction of the effort, even if leveraging
a specialized framework such as that from [3]. Yet, there are already knowledge
models that are both thematically suitable and exhibit a relatively rich struc-
ture, and thus are worth considering for this purpose. However, since they do not
comply with all Semantic Web best practices, never mind assuring compatibility
with pivotal vocabularies such as GoodRelations, a certain kind of transforma-
tion is still needed. An outstanding example of this resource is the Freebase
schema [4]. In this paper we argue that it is possible to obtain a GR-based prod-
uct ontology from a part of Freebase with the help of our pattern-based ontology
transformation framework [5]; this task can be viewed as a solution of import-
based extrinsic incoherence (‘adapting legacy ontologies to a canonical modeling
style’) as mentioned in [6]. Specifically, we demonstrate how a part of the Free-
base Medicine schema can be transformed into a GR-based prescription drug
ontology (the domain was chosen because drugs are usually well-documented in
public contracts). The resulting ontology was evaluated by experimental usage
in another project, involving matchmaking of public contracts with suppliers [7],
where we hope to improve the matchmaking by exploiting product ontologies.

Section 2 contains a summary of principles of GR-based product ontologies
and the employed transformation framework. In Section 3 we explain how the
transformation has been performed. Section 4 describes the evaluation of the
ontology. Section 5 surveys related research, and Section 6 concludes the paper.

2 Exploited Technologies and Resources

2.1 GoodRelations-based Product Ontologies

Available guidelines for the design of a GR-based product ontology6 prescribe,
among other things, the following:

– all product classes should be subclasses of the gr:ProductOrService class
– object properties for specifying product parameters should be subproperties

of either gr:quantitative- or gr:qualitativeProductOrServiceProperty
– subproperties of gr:quantitativeProductOrServiceProperty should have range

specified to gr:QuantitativeValueFloat or gr:QuantitativeValueInteger
– data properties should be subproperties of gr:datatypeProductOrServiceProperty

and used only if there is a good reason; even properties with numerical range
should be modeled as object properties.

4 http://wiki.goodrelations-vocabulary.org/Cookbook
5 http://purl.org/opdm
6 http://wiki.goodrelations-vocabulary.org/Documentation/Extensions

Extracting Product Ontologies from Freebase 3

The task of turning a generic ontology covering a product and its properties
into a GR-based product ontology is thus mainly in identifying relevant classes
and properties, making them subclasses and subproperties of appropriate GR
entities, and modifying their range so that the rules such as the above-mentioned
are fulfilled.

Such alignment of a product ontology with GR allows for example an easy
design of an automatic GUI generator. GUI elements for entering property values
can be created automatically according to the parent property: a selection of
possible values for subproperties of gr:qualitativeProductOrServiceProperty, a
number field for subproperties of gr:quantitativeProductOrServiceProperty. The
latter can also be accompanied with a field for measurement units as there is
already a property for specifying those integrated in GR. GR also allows to
assign an interval instead of an exact value to a quantitative property. We are
developing such GUI generator for an application that will allow entering product
specification data to a public contract, but a similar GUI generation principles
could be used for e.g. a product search application. In the matchmaking scenario,
the property structure can be exploited in comparing product specifications.
E.g. different values of a qualitative property indicates different products while
a slight difference between two quantitative values might mean that the two
products are interchangeable.

2.2 Transformation Framework

The involved transformation framework can be viewed as a more sophisticated
variant of using SPARQL updates. It is based on transformation patterns (ex-
pressed in XML7) consisting of three parts: source ontology pattern, target ontol-
ogy pattern and pattern transformation. The source pattern describes a fragment
that is to be found in the ontology and transformed into the fragment described
by the target pattern. The pattern transformation describes how the two frag-
ments are connected. Based on this information the transformation framework
computes and applies the necessary ontology updates: axioms and entities are
either added or removed. Unlike SPARQL update, however, the transformation
can be user-assisted. After the first phase of the transformation, the occurrences
(instances) of the source pattern are displayed to the user and it is possible
to select only a subset of the instances that are then transformed while the
unselected rest are kept intact. We employed this mechanism to select classes
representing GR product classes and qualitative classes based on manual analy-
sis of the schema, as we currently do not have an automated way of determining
which classes in the ontology have such a meaning.

The framework is available as a Java library.8 To make its application easier,
we developed a graphical user interface, called GUIPOT.

7 The schema for the files is available at http://nb.vse.cz/~svabo/patomat/tp/

tp-schema.xsd
8 http://owl.vse.cz:8080/releases.html

4 Marek Dudáš et al.

2.3 GUIPOT

GUIPOT is a plugin for Protégé 4.9 It allows the user to load a transformation
pattern and display a list of pattern instances detected in the given ontology. If
one or more instances from the list are selected, they are highlighted in a clas-
sical Protégé hierarchy view and also visualized in a node-link view on the left
part of the plugin window (Figure 1). The visualization can be switched to four
different levels of detail. The default one uses OntoGraf10 and displays classes
as nodes with properties as links between them (according to domain/range re-
lationships). A more detailed view where properties and complex relationships
between classes (e.g. complementOf) are displayed as separate nodes is imple-
mented using SOVA11 visualization plugin. SOVA is also used for less detailed
overviews of class hierarchy where the class nodes are laid out with spring layout
or tree layout algorithms. The detailed views show fragments of the ontology in-
volved in the selected pattern instances. The overviews show the whole ontology
with entities involved in the selected pattern instances highlighted.

When the user is satisfied with the selection, s/he just clicks the ”Apply
Transformation” button. The right part of the window shows the ontology after
transformation, with affected entities indicated by red arrows and highlighted or
focused in the visualization (analogically to the visualization of selected pattern
instances). The transformed ontology can then be loaded into Protégé with a
single click and then either edited manually or transformed with another pattern.

3 Transforming the Freebase Schema

3.1 Overview of the Process

The translation of Freebase Schema into RDF is already solved, since Google
offers a Freebase RDF dump.12 To obtain a GR-based product ontology from the
dump, we have to select relevant classes and properties and align their modelling
style with that indicated in Section 2.1. This can be done in a semi-automated
way using the transformation framework in GUIPOT.

Simple pre-processing was needed before the Freebase schema could be loaded
as an ontology into Protégé. As the dump is too big (>200GB), we filtered the
relevant part of the file using the Linux grep command (exploiting the naming
conventions of Freebase – all entities related to one topic have the same prefix
in their name). Furthermore, we had to retype the instances of rdf:Property to
owl:ObjectProperty (since all Freebase properties are, syntactically, conceived as
object properties, possibly valued by a custom class of, e.g., ‘all integers’), using
a simple SPARQL update query.

9 http://owl.vse.cz:8080/GUIPOT/
10 http://protegewiki.stanford.edu/wiki/OntoGraf
11 http://protegewiki.stanford.edu/wiki/SOVA
12 https://developers.google.com/freebase/data

Extracting Product Ontologies from Freebase 5

Fig. 1. A screenshot of GUIPOT where the transformation pattern for making selected
classes subclasses of gr:ProductOrService is being applied: the left part shows selected
instances of the pattern, the right part shows the transformed ontology.

We designed 14 transformation patterns13 for aligning the modelling style of
an ontology obtained from Freebase. When they are applied sequentially, they
transform the preprocessed (as described above) ontology obtained from Free-
base into a GR-based product ontology. The patterns are designed to be reusable
on other parts of Freebase schema than the one described in this paper: they
should allow the transformation of virtually any Freebase schema part related to
a selected product into a GR-based product ontology in a few hours (including
the initial schema analysis and the above described preprocessing).

The whole transformation process is shown in Fig. 2. The resulting Drug
ontology (DON) has 27 classes, 34 object properties, 17 data properties and 6
individuals, altogether 84 entities described with 715 axioms.

Fig. 2. Diagram of the transformation process

13 All patterns, the transformed ontology and details about the evaluation can be found
at http://pages.vse.cz/~xdudm12/ecweb2014/ (or http://bit.ly/1eEP3yL).

6 Marek Dudáš et al.

3.2 The Transformation Patterns

The first two patterns are ‘helper’ patterns used to annotate the initial state
of the ontology. The annotation is removed from the entities as they are trans-
formed, which allows leaving them out of further transformations and also to
delete entities that have not been touched by any transformation at the end of
the process; they are not supposed to be part of the product ontology as they
have not been selected by any transformation.

The next two patterns require user assistance. A list of all classes is presented
to the user and s/he decides which of them are to be transformed into subclasses
of gr:ProductOrService and gr:QualitativeValue.

The application of the fifth pattern leads to transformation of qualitative
properties to subproperties of gr:qualitativeProductOrServiceProperty.

The sixth pattern is used to transform qualitative properties in a similar
way as the previous pattern. The difference is that in this case, properties with
range of a subclass of gr:ProductOrService are transformed. Only two of them
are selected, the rest of them represent inverse properties (e.g. ”drugs with this
formulation” linking a formulation to a drug when there is already a property
linking a drug to a formulation) and are not included into the final product
ontology to keep it lightweight.

The remaining patterns are designed to transform properties according to
their range. They do not require any selection of the pattern instances: all de-
tected instances are transformed. The range is changed from the custom Free-
base class (like type.int or type.text) to either an appropriate GR class (e.g.
gr:QuantitativeValueInteger) or a datatype. In the latter case, the object prop-
erty is transformed into a datatype property.

Three of these patterns are more complex and thus are discussed in more
detail. Pattern no. 7 finds properties whose range is a class that is a do-
main for two other properties with ranges of Freebase classes type.text and
type.float where the text property is used to specify units of the value speci-
fied by the float property. The same situation is already modeled in GoodRela-
tions and the additional two properties are unnecessary. The former property
is transformed into a subproperty of gr:quantitativeProductOrServiceProperty
with range of gr:QuantitativeValueFloat and the other two properties can be
removed at the end of the transformation process. Pattern no. 8 transforms
properties with range of type.boolean into instances of a newly created class Fea-
ture (subclass of gr:QualitativeValue). A property hasFeature is created with
range set to Feature. (Follows modeling style used in Vehicle Sales Ontology14

– a model example of a GR-based product ontology.) Pattern no. 10 is designed
for properties with range of type.enumeration: they are made subproperties of
gr:qualitativeProductOrServiceProperty and their range is changed to a newly
created subclass of gr:QualitativeValue. A new datatype property is also created
with that class as a domain. The intention is to make the values of the property
dereferencable. A summary of all transformation patterns is shown in Table 1.

14 http://purl.org/vso

Extracting Product Ontologies from Freebase 7

Table 1. Simplified overview describing what entities are transformed by each pattern
identified by its number, the last column specifies whether the user has to select the
transformed entities manually. Abbreviations are used: ’float’ object property means
object property with range of type.float (a Freebase class), gr:qualit...Property means
gr:qualitativeProductOrServiceProperty etc.

Transformed entities Transformed into U

1 classes original state annotation
2 object properties original state annotation
3 selected classes subclasses of gr:ProductOrService x
4 selected classes subclasses of gr:QualitativeValue x
5 object properties with range of

gr:QualitativeClass subclass
subproperties of gr:qualit...Property

6 object properties with range of
gr:ProductOrService subclass

subproperties of gr:qualit...Property x

7 ’float’ object properties with unit
specification

subproperties of gr:quan...Property with
range of gr:QuantitativeValueFloat

8 ’boolean’ object properties instances of class Feature
9 ’datetime’ object properties datatype subproperties of

gr:data...Property
10 ’enumeration’ object properties subproperties of gr:qualit...Property
11 ’float’ object properties subproperties of gr:quan...Property with

range of gr:QuantitativeValueFloat
12 ’int’ object properties subproperties of gr:quan...Property with

range of gr:QuantitativeValueInteger
13 ’rawstring’ object properties datatype subproperties of

gr:data...Property
14 ’text’ object properties datatype subproperties of

gr:data...Property

3.3 Example of a Transformation Pattern – Pattern No. 5 in More
Detail

The axioms part of the source ontology pattern (Figure 3) describes the axioms
which the entities and placeholders from entity declarations must fulfill. After the
pattern is loaded, the ontology is searched for combinations of entities that when
used to instantiate the placeholders hold the axioms. The placeholder ?m repre-
sents the qualitative object properties we are looking for. The first two axioms
ensures that these properties have the range of a subclass of gr:QualitativeValue.
Here we exploit the fact that we have already transformed relevant classes into
subclasses of gr:QualitativeValue with the previous transformation pattern. The
third axiom ensures that only the properties that were not yet transformed are
taken into account.

The pattern transformation (<pt>) part of the target ontology pattern (Fig-
ure 4) defines the connection between the source and target ontology pattern.
The placeholders are instantiated with the selected instances of the source on-
tology pattern. Axioms defined in the target ontology pattern (<op2>) are

8 Marek Dudáš et al.

<entity_declarations>

<placeholder type="ObjectProperty">?m</placeholder>

<placeholder type="Class">?range_class</placeholder>

<entity type="Class">&gr;QualitativeValue</entity>

<entity type="AnnotationProperty">&owl;deprecated</entity>

</entity_declarations>

<axioms>

<axiom>ObjectProperty: ?m Range: ?range_class</axiom>

<axiom>Class: ?range_class SubClassOf: QualitativeValue</axiom>

<axiom>ObjectProperty: ?m Annotations: deprecated true</axiom>

</axioms>

Fig. 3. Source ontology pattern part of the pattern for transformation of qualitative
properties.

<op2>

<entity_declarations>

<placeholder type="ObjectProperty">?OP2_m</placeholder>

<placeholder type="Class">?OP2_range_class</placeholder>

<entity type="ObjectProperty">

&gr;qualitativeProductOrServiceProperty</entity>

<entity type="Class">&gr;QualitativeValue</entity>

<entity type="AnnotationProperty">&owl;deprecated</entity>

</entity_declarations>

<axioms>

<axiom>ObjectProperty: ?OP2_m SubPropertyOf:

qualitativeProductOrServiceProperty</axiom>

<axiom>Class: ?OP2_range_class SubClassOf:

QualitativeValue</axiom>

<axiom>ObjectProperty: ?OP2_m Range:

?OP2_range_class</axiom>

<axiom>ObjectProperty: ?OP2_m Annotations:

deprecated false</axiom>

</axioms>

</op2>

<pt>

<eq op1="?m" op2="?OP2_m"/>

<eq op1="?range_class" op2="?OP2_range_class" />

</pt>

Fig. 4. Target ontology pattern (op2) and pattern transformation part (pt) of the
pattern for transformation of qualitative properties.

Extracting Product Ontologies from Freebase 9

added into the ontology. The most important is the first axiom which makes
the qualitative properties found using the source ontology pattern subproper-
ties of gr:qualitativeProductOrServiceProperty. The second and third axioms are
there only to keep the range class intact: the standard behaviour of the trans-
formation framework is to remove axioms defined in the source ontology pattern
from the ontology. The fourth axiom disables the deprecated annotation on the
transformed object property.

3.4 Use Case Lessons Learned for the Transformation Framework

Keeping the Description of the Entity During Its Transformation When the
type of the entity is not changed during its transformation, its annotations (la-
bels, comments etc.) and other axioms describing it are kept intact. In case of
heterogeneous transformation, when the entity is transformed into an entity of
different type, e.g. in case of the pattern no. 8 where an object property is trans-
formed into an instance, all annotations and other axioms related to that entity
and not specified in the transformation pattern are removed from the ontology.
That might be unpleasant – e.g. the label of a property may be still valid even
though the property is transformed into an instance. The only current solution
is to explicitly define all annotations and axioms that are to be kept into the
transformation pattern. This is not a big issue in case of this Freebase schema
transformation as most of the entities that are transformed into different types
do not have any annotations. A possible future improvement of the transforma-
tion framework related to this issue is to automatically add annotations that
would link the new (transformed) entity to the original one.

Instances So far, we have been focusing on the transformation of the schema (i.e.
TBox). The transformation does not deal with existing Freebase instances (i.e.
ABox), even though it would obviously be useful to transform the data along
with the schema so that the Freebase instances might be reused together with
the schema. Adding such functionality to the transformation framework should
not be technically difficult and we are currently considering it.

Namespaces The transformation patterns do not change the prefix of trans-
formed entities - their URI is kept intact. As the transformed entity is obviously
not the same as the original entity, its URI should be different. This can be
solved easily with Protégé where the namespace of all entities can be changed
by one command.

4 Evaluation

4.1 Evaluation by usage

As the main motivation and purpose of the ontology is its use in our match-
making project, we made a preliminary evaluation of its coverage by using it

10 Marek Dudáš et al.

experimentally. We manually annotated15 10 public contracts (selected as hav-
ing extensive documentation) focusing on specifications of demanded and offered
drugs included in publicly available plain-text documentation of the contracts.
Some contracts included more than one drug and each contract had several
contenders – 79 instances of gr:Offering were created. Only 4 classes and 3
properties from DON were used in the annotation, i.e. approx. 8% of DON was
needed to annotate the drugs as described in the documentation. One property
was identified as missing and had to be added to DON. Hence, we can say that
8 concepts were needed to annotate the product data (the 4 classes, 3 properties
from DON and the one added property) of which 7 were covered by the ontology
as extracted from FB, i.e. the ontology covered 87.5% of the specific domain.

4.2 Evaluation by a group of test users

While the previous evaluation was done by the authors of this paper (i.e. expert
users), we decided to also test the user-friendliness of DON to lay users in the
domain of drug supply public contracts (as the above mentioned 8% exploitation
of concepts from DON might indicate it is too complex for our use case). 15
students with basic knowledge of OWL were given a brief (one hour) introduction
to GR, DON and Ontowiki and a written manual describing its usage. Then they
were asked to annotate one instance of a gr:Offering including a drug specified in
some public contract (the selection was up to the students) using the same classes
and properties as above. 3 students made no apparent mistakes; 4 others only
made one mistake in unit specification (they were asked to use UN/CEFACT
codes as GR documentation recommends) and were also considered as successful;
i.e. about 47% of the students were able to use DON correctly. Furthermore, the
mistakes were mostly in the usage of GR; only two errors were in incorrect usage
of DON. Each student spent more than an hour creating the annotation, which
was mainly caused by technical difficulties with Ontowiki (for this reason, precise
time measurement did not make sense). Similar annotations done by an expert
user after solving most of the difficulties took about 5–10 minutes each.

4.3 Evaluation against a similar ontology

We also measured similarity to a reference ontology by counting precision and re-
call measures based on [8]. We took part of the RDF representation of Schema.org
describing the Drug concept as the reference ontology. To abstract from struc-
tural differences between Schema.org and DON, we limited the comparison to
properties having as their domain the Schema.org Drug class and properties
having as their domain one of the classes representing a drug in DON. The
equivalence of the properties was evaluated according to the similarity of their
meaning, as defined in their descriptions and comments. Recall was computed as
the proportion of properties from the drug part of Schema.org (DSchema) that
have an equivalent in DON:

15 Using Ontowiki: http://aksw.org/Projects/OntoWiki.html

Extracting Product Ontologies from Freebase 11

(DSchema ∩DON)

DSchema
= 14/38 ≈ 37%

Precision is analogical – the proportion of DON properties that have an equiv-
alent in the drug part of Schema.org :

(DON ∩DSchema)

DON
= 22/37 ≈ 59%

The comparison suggests that basic properties are covered in both schemas.
However, the relatively high values might be influenced by the involvement of
Google in both Schema.org and Freebase.

5 Related Research

[3] presents guidelines and a pattern-based framework for re-engineering non-
ontological resources (NOR), such as classification schemas, into OWL ontolo-
gies. The framework is very versatile and might have been even applicable to
Freebase proprietary data format if its OWL representation wasn’t already avail-
able. Our OWL-to-OWL transformation framework might still be useful for the
refinement of an ontology produced by the NOR-to-OWL transformation.

A similar project targeted directly on product ontologies is PCS2OWL [9] –
a framework for transformation of non-ontological product classifications such as
eCl@ss16 into GR-based product ontologies. Although such classifications some-
times include product properties descriptions and PCS2OWL should allow to
transform even those, it focuses mainly on transformation of the product tax-
onomy. Freebase schema contains richer description of product properties (e.g.
including their range) but there is virtually no information about the prod-
uct class hierarchy. We thus believe that our approach could be combined with
PCS2OWL, e.g. by enriching the class taxonomy created with PCS2OWL by
properties extracted from Freebase.

A method for transformation of existing knowledge sources into conceptual
data models is proposed in [10]. Although it focuses on rather opposite direc-
tion of the transformation and shows an example of transformation of an OWL
ontology into a Power Designer conceptual model, it also mentions Freebase as
a possible resource.

6 Conclusion and Future Work

We have shown that a GR-based product ontology can be obtained from Free-
base by extracting a relevant portion of the Freebase RDF dump (using simple
text-based filtering with grep) and transforming its modelling style using the
pattern-based ontology transformation framework. The preliminary evaluation

16 http://www.eclass.de

12 Marek Dudáš et al.

suggests that the resulting ontology is not perfect and might need minor manual
refinement. However, the usage of the ontology in our specific use case has so far
been successful, the ontology seems to be quite easy to use and its similarity to
part of Schema.org suggests it covers most of the important concepts from its
domain. We plan to do more thorough testing in the future including transfor-
mation of more product ontologies and running matchmaking algorithms (from
[7]) over the data. We have already extracted mobile phone and digital camera
product ontologies from Freebase but these ontologies are yet to be evaluated.

Acknowledgements This research is supported by VŠE IGA project F4/34/2014
(IG407024) and EU ICT FP7 under No. 257943 (LOD2 project). Ondřej Zamazal
has been supported by the CSF grant No. 14-14076P.

References

1. Hepp, M.: Goodrelations: An ontology for describing products and services offers
on the web. In: Knowledge Engineering: Practice and Patterns. Springer (2008)
329–346

2. Ashraf, J., Cyganiak, R., O’Riain, S., Hadzic, M.: Open ebusiness ontology usage:
Investigating community implementation of goodrelations. In: LDOW. (2011)

3. Villazón-Terrazas, B., Gómez-Pérez, A.: Reusing and re-engineering non-
ontological resources for building ontologies. In: Ontology Engineering in a Net-
worked World. Springer (2012) 107–145

4. Bollacker, K., Evans, C., Paritosh, P., Sturge, T., Taylor, J.: Freebase: a collabora-
tively created graph database for structuring human knowledge. In: Proceedings of
the 2008 ACM SIGMOD international conference on Management of data, ACM
(2008) 1247–1250

5. Šváb-Zamazal, O., Svátek, V., Iannone, L.: Pattern-based ontology transformation
service exploiting OPPL and OWL-API. In: Knowledge Engineering and Knowl-
edge Management by the Masses. EKAW-2010. (2010)

6. Dudas, M., Svatek, V., Torok, L., Zamazal, O., Rodriguez-Castro, B., Hepp, M.:
Semi-automated structural adaptation of advanced e-commerce ontologies. In: E-
Commerce and Web Technologies. Springer Berlin Heidelberg (2013) 51–58

7. Nečaský, M., Kĺımek, J., Mynarz, J., Knap, T., Svátek, V., Stárka, J.: Linked data
support for filing public contracts. Computers in Industry (2014)

8. Maedche, A.: Ontology learning for the semantic Web. Kluwer Academic Publish-
ers (2002)

9. Stolz, A., Rodriguez-Castro, B., Radinger, A., Hepp, M.: Pcs2owl: A generic ap-
proach for deriving web ontologies from product classification systems. In: The
Semantic Web: Trends and Challenges. Springer (2014) 644–658

10. Trinkunas, J., Vasilecas, O.: Ontology transformation: From requirements to con-
ceptual model. Scientific Papers, University of Latvia, Computer Science and
Information Technologies 751 (2009) 52–64

